Biophysics of Human Neutrophil Haptokinesis

Steven J. Henry

<u>Funding</u>: NIH HL18208 to DAH NSF GRFP to SJH

Penn UNIVERSITY of PENNSYLVANIA Committee:

Daniel A. Hammer, PhD (advisor) Scott L. Diamond, PhD (chair) John C. Crocker, PhD Dongeun Huh, PhD

Biophysics of Human Neutrophil Haptokinesis

Neutrophils: first responders to trauma and infection

Janeway et al. Immunobiology. 6th Ed.

66% marrow production = neutrophils 10¹¹ neutrophils/day

Fast (sec-min) Response Times

Borregaard. 2010. Immunity.

Motility Central to Function

McDonald et al. 2010. Science.

Neutrophils: a model cell type

Axis-Shield

Minimally invasive: venipuncture

Ubiquitous: ~ 10⁶ cells/mL whole blood

Fast-acting : sec-min

Highly motile: ~ 10 um/min

Leukocyte Adhesion Cascade

Ley. 2007. Nat Rev Immunol.

Cell environments are complex (multi-stimulatory)

Today, neutrophil responses to:

Why we should care ... therapies of tomorrow Today!

Neutrophils Infiltrate Tumors

Tazzyman. 2013. Sem Canc Bio.

van Egmond et al. 2013. Sem Canc Bio.

7

Outline

Shape and Motility

Ligand density elicits phenotypic switch in human neutrophils Henry, Crocker, Hammer. 2014. *Integr Biol.*

Density Sensing

Dynamic traction forces of spreading and adherent human neutrophils **Henry**, Crocker, Hammer. 2015. *ABME* (In Prep)

Spreading Mechanics

Dynamic traction forces of spreading and adherent human neutrophils Henry, Chen, Crocker, Hammer. 2015. *Biophys J*. (Under Revision)

Shape and Motility

Ligand density elicits phenotypic switch in human neutrophils Henry, Crocker, Hammer. 2014. *Integr Biol.*

<u>Aim</u>:

Quantify effect of adhesion density on neutrophil shape and motility

Hypotheses:

Neutrophil shape and motility are adhesion-sensitive Integrin receptors will mediate this adhesion

Canonical amoeboid phenotype of neutrophils

David Rogers, 1950s

Butler et al. 2008. Cell Immunol.

Cassimeris et al. 1990. JCB.

Can adhesivity reconcile these conflicting observations?

David Rogers, 1950s

Butler et al. 2008. Cell Immunol.

Cassimeris et al. 1990. JCB.

Tuning Ahesivity via Microcontact Printing

Exquisite cell-ligand specificity

BSA Blocked

Pluronic Blocked

Henry et al. 2014. Integr Biol.

Two dramatically different modes of motility

Amoeboid

Highly Adhesive Surface

Moderately Adhesive Surface

"Keratocyte-Like"

Henry et al. 2014. Integr Biol.

"Keratocyte-like" morphology

Neutrophils

Henry et al. 2014. Integr Biol.

Epithelial Keratocytes

Keren et al. 2008. Nature.

Lee et al. 1997. JCS.

Fibronectin density as controller of shape

Henry et al. 2014. Integr Biol.

Objective and reproducible cell tracking

Motility as a persistent random walk

Henry et al. 2014. Integr Biol.

Hyptothesis: integrins mediate adhesion

Henry et al. 2014. Integr Biol.

$\alpha_M \beta_2$ (Mac-1) is a promiscuous integrin Hypothesis: density sensitivity is not FN specific

Intermediate density BSA - Be careful about choice of "blocking" agent!

High density BSA

Henry et al. 2014. Integr Biol.

20

So far, response to adhesive ligand alone (haptokinesis)

Response to adhesive ligand **and** chemoattractant?

Haptokinesis (surface stim.) \rightarrow chemokinesis (soluble stim.) of keratocyte-like phenotype

23

Neutrophils are capable of an adhesiondriven phenotypic switch with respect to shape and motility.

Promiscuous Mac-1 mediates this sensitivity.

Length scale of density sensing?

Density Sensing

Dynamic traction forces of spreading and adherent human neutrophils **Henry**, Crocker, Hammer. 2015. *ABME* (In Prep)

<u>Aim</u>:

Elucidate length scale of density sensitivity

<u>Hypotheses</u>: (on dual adhesive environments) Local (submicron) sensitivity → amoeboid Global (whole cell) sensitivity → keratocyte-like

Arrays of discrete islands via "stamp-off"

Henry et al. 2015. ABME. (In Prep)

Engineering dual adhesive length scales

Henry et al. 2015. ABME. (In Prep)

Neutrophil phenotype on islands?

Keratocyte-Like!

Henry et al. 2015. ABME. (In Prep)

Neutrophils integrate adhesive stimulation

High Density Continuous Field

Islands

Low Density Continuous Field

Neutrophils integrate adhesive stimulation Rapid amoeboid \rightarrow keratocyte-like transitions

Henry et al. 2015. ABME. (In Prep)

Motility on islands \approx moderate adhesivity continuous field

Henry et al. 2015. ABME. (In Prep)

* p < 0.05, post-hoc Dunn-Sidak multi. comp. ³²

Neutrophils integrate local (submicron) adhesive stimuli and coordinate a global (whole cell) phenotypic response.

Spreading Mechanics

Dynamic traction forces of spreading and adherent human neutrophils Henry, Chen, Crocker, Hammer. 2015. *Biophys J*. (Under Revision)

<u>Aim</u>:

Measure forces of adhesion-driven spreading

Hypothesis:

Spreading is an active process analogous to lamellipodium formation

Neutrophil spreading is fast. Can we measure the associated forces?

Lomakina et al. 2014. Biophys J.

Sengupta et al. 2006. Biophys J.

mPADs (microfabricated Post-Array-Detectors):

Array geometry preserved from Part II

Hole Arrays: Plan View

Hole Arrays: Cross-Section

Henry et al. 2015. Biophys J. (Under Revision.)

Henry et al. 2015. ABME. (In Prep)

Neutrophil spreading on mPADs: raw data

Neutrophil spreading on mPADs: force annotation

Neutrophil spreading on mPADs

Adhesion Nucleation

Protrusion

Contraction

Plotting force trajectories in the cell reference frame

Dichotomizing data on geometric location

Ensemble avg makes mechanical regimes apparent

Characterizing the protrusive wave

Henry et al. 2015. Biophys J. (Under Revision)

* p < 0.05, post-hoc Tukey LSD method 44

Characterizing the Steady State Contractile Regime

Henry et al. 2015. *Biophys J*. (Under Revision)

* p < 0.05, post-hoc Tukey LSD method ⁴⁵

Are protrusion and contraction biochemically distinct?

Modified from Stroka. 2013. PLOS ONE.

Svitkina. 1999. JCB.

Looking for inhibitor effects

Sustained contractility is ROCK and Myosin II mediated

Spreading is **not** actin-branching liable

49

Spreading is not analogous to lamellipodium formation

Competition b/n adhesive energy and cortical stiffness?

Tension < Adhesive Energy

Jasplakinolide = stiffeningControl10 uM

Sheikh et al. 1997. BBRC.

Cytochalasin B = softening

Cross-linked filamenteous actin

Cortical **stiffening eliminates** spreading Cortical **softening slows** spreading

Spreading is integrin mediated **but** connection to the mature actomyosin substructure takes minutes to develop...

Invagination: a spreading neutrophil pushing through post tips

Neutrophil adhesion-driven spreading is itself a phenotypic switch triggered by decrease in resting cortical tension.

Role of adhesivity in cancer metastasis?

Modified from Thiery et al. 2009. *Cell*.

Thank you!

Advisor

Daniel A. Hammer, PhD

Committee

Scott L. Diamond, PhD (Chair) John C. Crocker, PhD Dongeun Huh, PhD

Scientific Collaborators

John C. Crocker, PhD Christopher S. Chen, PhD Neha P. Kamat, PhD Daeyeon Lee, PhD Hammer Lab All members past and present

Funding National Institutes of Health (HL18208 to DAH) National Science Foundation (GRFP to SJH)

Questions?

Shape and Motility

Ligand density elicits phenotypic switch in human neutrophils Henry, Crocker, Hammer. 2014. *Integr Biol.*

Density Sensing

Dynamic traction forces of spreading and adherent human neutrophils **Henry**, Crocker, Hammer. 2015. *ABME* (In Prep)

Spreading Mechanics

Dynamic traction forces of spreading and adherent human neutrophils Henry, Chen, Crocker, Hammer. 2015. *Biophys J*. (Under Revision)

