# Biophysics of Human Neutrophil Haptokinesis 

## Steven J. Henry

Funding:<br>NIH HL18208 to DAH<br>NSF GRFP to SJH

Committee:
Daniel A. Hammer, PhD (advisor) Scott L. Diamond, PhD (chair) John C. Crocker, PhD
Dongeun Huh, PhD

## Biophysics of Human Neutrophil Haptokinesis




Axis-Shield


Lomakina et al. 2014. Biophys J.


Substrate

## Neutrophils: first responders to trauma and infection

## Fast (sec-min) Response Times

## White Blood Cell



Janeway et al. Immunobiology. $6^{\text {th }}$ Ed.
66\% marrow production = neutrophils $10^{11}$ neutrophils/day


Borregaard. 2010. Immunity.
Motility Central to Function


McDonald et al. 2010. Science.

## Neutrophils: a model cell type



Axis-Shield

Minimally invasive: venipuncture
Ubiquitous: $\sim 10^{6}$ cells/mL whole blood
Fast-acting : sec-min
Highly motile: ~ 10 um/min

## Leukocyte Adhesion Cascade



Ley. 2007. Nat Rev Immunol.

## Cell environments are complex (multi-stimulatory)



## Today, neutrophil responses to:



## Why we should care ... therapies of Today!

Neutrophils Infiltrate Tumors


Tazzyman. 2013. Sem Canc Bio.

van Egmond et al. 2013. Sem Canc Bio.

Imprime PGG®
( $\beta$-glucan as Leukocyte Adjuvant)

www.biothera.com



Hong et al. 2003. Canc Res.

## Outline

## Shape and Motility

Ligand density elicits phenotypic switch in human neutrophils
Henry, Crocker, Hammer. 2014. Integr Biol.


## Density Sensing

Dynamic traction forces of spreading and adherent human neutrophils
Henry, Crocker, Hammer. 2015. ABME (In Prep)

## Spreading Mechanics

Dynamic traction forces of spreading and adherent human neutrophils Henry, Chen, Crocker, Hammer. 2015. Biophys J. (Under Revision)


## Shape and Motility

Ligand density elicits phenotypic switch in human neutrophils
Henry, Crocker, Hammer. 2014. Integr Biol.


## Aim:

Quantify effect of adhesion density on neutrophil shape and motility

Hypotheses:
Neutrophil shape and motility are adhesion-sensitive Integrin receptors will mediate this adhesion

## Canonical amoeboid phenotype of neutrophils



David Rogers, 1950s


Cassimeris et al. 1990. JCB.


Butler et al. 2008. Cell Immunol.

## Can adhesivity reconcile these conflicting observations?



David Rogers, 1950s


Cassimeris et al. 1990. JCB.


Butler et al. 2008. Cell Immunol.


Oakes et al. 2009.
Blood.
Stroka et al. 2009.
Cyto.

## Tuning Ahesivity via Microcontact Printing



Henry et al. 2014. Integr Biol.

## Exquisite cell-ligand specificity



## Two dramatically different modes of motility



Henry et al. 2014. Integr Biol.

## "Keratocyte-like" morphology

## Epithelial Keratocytes

## Neutrophils



Henry et al. 2014. Integr Biol.


Keren et al. 2008. Nature.


Lee et al. 1997. JCS.

Fibronectin density as controller of shape


## Increasing FN

Henry et al. 2014. Integr Biol.

## Objective and reproducible cell tracking



Link Centroids

## Motility as a persistent random walk



Henry et al. 2014. Integr Biol.

Hyptothesis: integrins mediate adhesion


Henry et al. 2014. Integr Biol.

[^0]$\alpha_{M} \beta_{2}$ (Mac-1) is a promiscuous integrin Hypothesis: density sensitivity is not FN specific

Intermediate density BSA - Be careful about choice of "blocking" agent!


High density BSA


Henry et al. 2014. Integr Biol.

[^1]
## So far, response to adhesive ligand alone (haptokinesis)



## Response to adhesive ligand and chemoattractant?



Haptokinesis (surface stim.) $\rightarrow$ chemokinesis (soluble stim.) of keratocyte-like phenotype


## Part I Summary

Neutrophils are capable of an adhesiondriven phenotypic switch with respect to shape and motility.

Promiscuous Mac-1 mediates this sensitivity.


## Length scale of density sensing?



## Density Sensing

Dynamic traction forces of spreading and adherent human neutrophils Henry, Crocker, Hammer. 2015. ABME (In Prep)


## Aim:

Elucidate length scale of density sensitivity

Hypotheses: (on dual adhesive environments) Local (submicron) sensitivity $\rightarrow$ amoeboid Global (whole cell) sensitivity $\rightarrow$ keratocyte-like

## Arrays of discrete islands via "stamp-off"



Henry et al. 2015. ABME. (In Prep)

## Engineering dual adhesive length scales



Henry et al. 2015. ABME. (In Prep)

## Neutrophil phenotype on islands?

Keratocyte-Like!

High Density Continuous Field


Low Density Continuous Field


Fluorescence


Islands


Phase Contrast


## Neutrophils integrate adhesive stimulation



High Density Continuous Field


Low Density Continuous Field


Neutrophils integrate adhesive stimulation Rapid amoeboid $\rightarrow$ keratocyte-like transitions

## Continuous, High Density

Unprinted


Henry et al. 2015. ABME. (In Prep)

## Motility on islands $\approx$ moderate adhesivity continuous field


$<\Delta r^{2}(\tau)>=2 S^{2} P[\tau-P(1-\exp (-\tau / P))]$ random motility coeff. $=S^{2} P / 2$


* p < 0.05, post-hoc Dunn-Sidak multi. comp. 32


## Part II Summary

Neutrophils integrate local (submicron) adhesive stimuli and coordinate a global (whole cell) phenotypic response.


## Spreading Mechanics

Dynamic traction forces of spreading and adherent human neutrophils
Henry, Chen, Crocker, Hammer. 2015. Biophys J. (Under Revision)


## Aim:

Measure forces of adhesion-driven spreading
Hypothesis:
Spreading is an active process analogous to lamellipodium formation

## Neutrophil spreading is fast.

Can we measure the associated forces?



Lomakina et al. 2014. Biophys J.


Sengupta et al. 2006. Biophys J.

## mPADs (microfabricated Post-Array-Detectors):



$$
\begin{aligned}
\mathrm{k}_{\text {spring }}= & 0.28 \pm 0.07 \mathrm{nN} / \mathrm{um} \\
& \mathrm{G} \sim 5 \mathrm{kPa}
\end{aligned}
$$

Schoen correction = 0.93
$\mathrm{k}_{\text {spring }}^{*}=(0.93)\left(\mathrm{k}_{\text {spring }}\right)$
$\mathrm{k}^{*}$ spring $=0.26 \mathrm{nN} / \mathrm{um}$
Schoen et al. 2010. NanoLett.

Ink


Henry et al. 2015. Biophys J. (Under Revision)

## Array geometry preserved from Part II



Hole Arrays: Cross-Section


Henry et al. 2015. Biophys J. (Under Revision.)

Henry et al. 2015. ABME. (In Prep)

## Neutrophil spreading on mPADs: raw data




 P $\mathrm{P}=\mathrm{P}$





 P



## Neutrophil spreading on mPADs: force annotation



## Neutrophil spreading on mPADs



## Adhesion Nucleation

## Plotting force trajectories in the cell reference frame



## Dichotomizing data on geometric location



## Ensemble avg makes mechanical regimes apparent

Transient Protrusion

$\tau$ (s)

Steady State Contraction

## Characterizing the protrusive wave





Force




## Characterizing the Steady State Contractile Regime



Henry et al. 2015. Biophys J. (Under Revision)

* p < 0.05, post-hoc Tukey LSD method 45


## Are protrusion and contraction biochemically distinct?

Hypothesis: Contraction is RhoA/Rock and Myosin Mediated

Hypothesis: Protrusion is lamellipodium formation


CK666 (1 uM)


Arp2/3


Modified from Stroka. 2013. PLOS ONE.


Svitkina. 1999. JCB.

## Looking for inhibitor effects




* $\mathrm{p}<0.05$, Tukey-Kramer multi. comp.

Henry et al. 2015. Biophys J. (Under Revision)

## Sustained contractility is ROCK and Myosin II mediated




* $\mathrm{p}<0.05$, Tukey-Kramer multi. comp.



## Spreading is not actin-branching liable



Henry et al. 2015. Biophys J. (Under Revision)

## Spreading is not analogous to lamellipodium formation

Hypothesis: Contraction is canonical RhoA/Rock and Myosin Mediated


Hypothesis: Protrusion is lamellipodium formation


## Competition b/n adhesive energy and cortical stiffness?



Jasplakinolide = stiffening


Sheikh et al. 1997. BBRC.

Tension < Adhesive Energy


Cytochalasin $B=$ softening


Tsai et al. 1994. Biophys J.

## A revised hypothesis:

Hypothesis: Contraction is canonical RhoA/Rock and Myosin Mediated


Hypothesis: cortical tension resists spreading
depolymerization;
( $\uparrow$ cortical stiffness)

actin
actin polymerization \& filament interaction;
( $\downarrow$ cortical stiffness)

## Cortical stiffening via Jasplakinolide abrogates spreading

1 uM Jasplakinolide inhibits cortical actin depolymerization


Cross-linked filamenteous actin

## Cortical stiffening eliminates spreading Cortical softening slows spreading



Henry et al. 2015. Biophys J. (Under Revision)

Spreading is integrin mediated but connection to the mature actomyosin substructure takes minutes to develop...


## Invagination: a spreading neutrophil pushing through post tips



Schematic to scale


Calibrated invagination depth ~ 1 um

## Part III Summary

Neutrophil adhesion-driven spreading is itself a phenotypic switch triggered by decrease in resting cortical tension.


## Role of adhesivity in cancer metastasis?



Modified from Thiery et al. 2009. Cell.

## Thank you!

Advisor<br>Daniel A. Hammer, PhD

Committee
Scott L. Diamond, PhD (Chair) John C. Crocker, PhD
Dongeun Huh, PhD

## Hammer Lab

All members past and present

## Funding

National Institutes of Health (HL18208 to DAH)
National Science Foundation (GRFP to SJH)

## Scientific Collaborators

John C. Crocker, PhD
Christopher S. Chen, PhD
Neha P. Kamat, PhD
Daeyeon Lee, PhD

## Questions?

## Shape and Motility

Ligand density elicits phenotypic switch in human neutrophils
Henry, Crocker, Hammer. 2014. Integr Biol.


## Density Sensing

Dynamic traction forces of spreading and adherent human neutrophils Henry, Crocker, Hammer. 2015. ABME (In Prep)

## Spreading Mechanics

Dynamic traction forces of spreading and adherent human neutrophils Henry, Chen, Crocker, Hammer. 2015. Biophys J. (Under Revision)



[^0]:    * p < 0.05, Dunnet's One Way ANOVA

[^1]:    * $p<0.05$, Dunnet's One Way ANOVA

