Fibronectin Induces β_2 -Integrin-Mediated Neutrophil Haptokinesis Independent of Chemoattractant Steven J. Henry[†]*, John C. Crocker, PhD[‡], and Daniel A. Hammer, PhD^{†‡} [†]Bioengineering & [‡]Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104,*sjhenry@seas.upenn.edu

Motivation

Improved homogeneity on printed PDMS

FN Printed PDMS

FN Adsorbed Glass

...despite similar protein deposition

Goal

Establish baseline motility metrics for neutrophil haptokinesis and chemokinesis on continuous fields of FN-printed PDMS.

Methodology

Microcontact Printing

Results

Exquisite Cell-FN Specificity

Glass BSA

PDMS F127

No off-FN adhesion observed on printed PDMS, blocked with Pluronic F127.

Integrin-Mediated Adhesion

Functional antibody blocking revealed Mac-1 ($\alpha_M \beta_2$) integrin receptor mediated adhesion to FN on PDMS.

L-Selectin as Activation Marker

L-Selectin Intensity (a.u.)

* p < 0.05 SNK Multiple Comparisons

An active phenotype (i.e. low L-Selectin) was not found exposure, suggesting binding and to FN prior subsequent motility were FN-induced via an outside-in pathway.

the random motility coefficient Computation of $(\mu = S^2 P/2)$, reveals the trend previously observed in the model-independent analysis.

Extent of haptokinesis ("No fMLF") was constant over FN range tested. During chemokinesis, fMLF only increased motility below an adhesive threshold.

Model Independent Motility Analysis

10 nM fMLF

* p < 0.05 SNK Multiple Comparisons

No fMLF 2 nM 10 nM

* p < 0.05 SNK Multiple Comparisons

Trend previously revealed was again captured in best-fit parameter A, defined as MSD($\tau = 1$ min). Across all conditions tested, best-fit power law exponent α was relatively constant with superdiffusive value ~ 1.5 .

Summary

 Printed FN on PDMS elicits homogeneous neutrophil population

- Difference in morphology on glass vs. PDMS is
- attributed to protein conformation not content • Adhesion to FN on PDMS is Mac-1 ($\alpha_M \beta_2$) mediated
- Motility is induced via an outside-in integrin activation pathway
- Constant basal motility induced by FN is sub-maximal
- Both kineses are superdiffusive

Acknowledgements

Gratitude is expressed to Christopher S. Chen, PhD and his students for sharing μ CP and mPADs expertise.

Funding provided by NIH (HL18208) to DAH and NSF Graduate Research Fellowship to SJH.

