

Motivation

Improved homogeneity on printed PDMS

FN Printed PDMS

FN Adsorbed Glass

...despite similar protein deposition

Goal

Establish baseline motility metrics for neutrophil haptokinesis and chemokinesis on continuous fields of FN-printed PDMS.

Methodology

Microcontact Printing

30

20

Neutrophil Kinesis on Fibronectin-Printed PDMS and a Biophysical Interpretation Steven J. Henry*, John C. Crocker, PhD, and Daniel A. Hammer, PhD

Bioengineering, University of Pennsylvania, Philadelphia, PA 19104,*sjhenry@seas.upenn.edu

Results

Exquisite Cell-FN Specificity PDMS Glass

BSA

Phase Contrast

F127

No off-FN adhesion observed on printed PDMS, blocked with Pluronic F127.

Integrin-Mediated Adhesion

T SD (n = 1) T SE (n = 2) * p < 0.05 Dunnet

Functional antibody blocking revealed Mac-1 ($\alpha_{M}\beta_{2}$) was integrin receptor mediating FN adhesion.

L-Selectin as Activation Marker

20-THEO. anti-CD62L

* p < 0.05 SNK Multiple Comparisons

An active phenotype (i.e. low L-Selectin) was not found prior to FN exposure, suggesting binding and subsequent motility were FN-induced via outside-in

Neu sup pow

Trend previously revealed is captured in best-fit parameter A defined a MSD($\tau = 1$ min). Across all conditions tested best-fit power law exponent α is relatively constant with superdiffusive value ~ 1.5 .

Extent of haptokinesis ("No fMLF") is constant over FN range tested . Yet, during chemokinesis, fMLF only increases motility below an adhesive threshold.

^r p < 0.05 SNK Multiple Comparisons

sope = 1	 5 ug/mL FN 5 ug/mL FN + 10 nM fMLF 25 ug/mL FN 25 ug/mL FN + 10 nM fMLF

Itrophils	accumulate	squared	displacement
erdiffusively	y. Dotted lines	are best-fits	to descriptive
ver-law mod	del: $MSD(\tau) = A$	$\Delta \tau^{\alpha}$.	

Summary

- Printed FN on PDMS elicits homogeneous neutrophil population • Adhesion is Mac-1 ($\alpha_M \beta_2$) mediated Adhesion and haptokinesis are induced via an outside-in integrin activation pathway
- Cells are dynamically altering either bond number or affinity state to achieve constant haptokinesis
- Kinesis is superdiffusive

Looking Forward

Correlating Discrete Force Fluctuations with Whole-Cell Trajectories Hypothesis: Cell kinesis is the manifestation of an ensemble of random walks at the single motor (myosin) lengthscale.

Continuous Fields to Discrete Islands Hypothesis: Cells integrate adhesive contact across entire cell body. This will manifest itself in motility metrics being similar on continuous fields and discrete islands if ligand density per total contact area is preserved.

Acknowledgments

his students for sharing μ CP and mPADs expertise. Funding provided by NIH (HL18208) to DAH and NSF Graduate Research Fellowship to SJH.

Gratitude is expressed to Christopher S. Chen, PhD and